

AFRL-IF-RS-TR-2004-28

Final Technical Report
 February 2004

MESO-ADAPTATION BASED ON MODEL
ORIENTED REENGINEERING PROCESS FOR
HUMAN-COMPUTER INTERFACE (MESOMORPH)

Georgia State University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K516

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-28 has been reviewed and is approved for publication.

APPROVED: /s/

JAMES M. NAGY
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 FEBRUARY 2004

3. REPORT TYPE AND DATES COVERED
Final Jul 00 – Jul 03

4. TITLE AND SUBTITLE
MESO-ADAPTATION BASED ON MODEL ORIENTED REENGINEERING
PROCESS FOR HUMAN-COMPUTER INTERFACE (MesoMORPH)

6. AUTHOR(S)
Melody Moore, David Yu,
Cen Shi, and Gnan Hoang

5. FUNDING NUMBERS
C - F30602-00-2-0516
PE - 62302E
PR - DASA
TA - 00
WU - 15

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia State University
35 Broad Street
Atlanta Georgia 30303-4013

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-28

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James M. Nagy/IFTB/(315) 330-3173/ James.Nagy@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
As computing technology increasingly pervades everyday life, demand for more flexible and adaptable user interfaces
increases. With advent of assistive technology for people with disabilities, user interfaces for mainstream applications
become more unique and specialized. This requires user interfaces to be adapted to fit their context, consisting of the
physical environment, user capabilities and activity factors. The MesoMORPH project examined methods to add
automation to context-dependent user interfaces. MesoMORPH is a toolset containing gauges that allow design-time
metrics related to feature importance and impact of changes according to a specialized context. MesoMORPH provides
support for the following capabilities: create optimized applications for a specified set of tasks, adapt for particular user,
adapt for a situation and/or adapt for a new device, such as from a desktop to a Palmtop display.

15. NUMBER OF PAGES
21

14. SUBJECT TERMS
Software Gauge,DASADA, Dynamic Software Assembly, Software Composition, Run-
Time Software Adaptation, Automation, Context-Dependent User Interface 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1 Introduction .. 1
2 Methods, Assumptions, and Procedures ... 3

2.1 Meso-Adaptation.. 3
2.2 Reverse Engineering the User Interface Model.. 4

2.2.1 Deriving the morphology.. 4
2.2.2 Modeling the morphology .. 5
2.2.3 Representing context .. 6
2.2.4 Transformation ... 9

3 Results and Discussion ... 12
4 Conclusions .. 13
5 References .. 14
6 List of Symbols, Abbreviations and Acronyms.. 15

 i

List of Figures
FIGURE 1: WINDOWS 98 CD PLAYER APPLICATION .. 4
FIGURE 2: THE OVERALL WINDOWS 98 CD PLAYER MORPHOLOGY ... 5
FIGURE 3: PORTION OF THE OVERALL MORPHOLOGY OF THE CD PLAYER .. 5
FIGURE 4: MORPH WIDGET ANNOTATIONS FOR MAIN MENU.. 5
FIGURE 5: THE NEOCLASSIC REPRESENTATION OF THE MAIN MENU WIDGET ATTRIBUTES 9
FIGURE 6: HAS-L CONTEXT REPRESENTATION FOR SEVERELY DISABLED USER WITH LOW SELECTION ABILITY 10
FIGURE 7: REPRESENTATION OF BUTTON WIDGET IN NEOCLASSIC... 11
FIGURE 8: CONTROL PORTION OF EVOLVED USER INTERFACE FOR LOW SELECTION ABILITY......................... 11

 ii

List of Tables
TABLE 1: SENSORY FACTORS FOR HUMAN CONTEXT .. 6
TABLE 2: MOTOR AND EFFECTOR FACTORS FOR HUMAN CONTEXT... 7
TABLE 3: SITUATIONAL CONTEXT FACTORS ... 7
TABLE 4: ACTIVITY CONTEXT FACTORS ... 8

 iii

1 Introduction

Interactive systems are more complex than ever despite research and technology development efforts to
make them more accessible and adaptable to a growing and increasingly diverse set of end-users.
Interactive applications are often designed for able-bodied users in typical environments such as offices and
homes. However, computing technology is pervading so many everyday activities in the military,
administration, business, and domestic spheres that people with widely differing cultural and educational
backgrounds, work roles and authorities, and physical and cognitive capabilities are called on to interact
with computer-based systems. Often these systems are accessed through special-purpose equipment,
general-purpose computer peripherals, and hand-held and wearable devices. As these devices become
more ubiquitous, the demand for user interfaces adapted for very specialized and unique environments is
increasing.

Ideally, interactive systems should be adapted to fit their context of use. Context is defined as the physical
environment or situation, human user capabilities, and activity scenarios that may affect the design of a
system’s user interface. For example, an application that is designed for a desktop computer may not be
appropriate for a high-distraction environment such as driving a vehicle. Alternatively, small buttons in a
user interface may prevent a person with poor control of a mouse from performing selections accurately. In
order to accommodate these new situations or human capabilities, the application’s user interface must be
adapted.

However, performing this adaptation by traditional development methods is very expensive and time
consuming. In order to reduce this cost, the MesoMORPH project is examining methods for adding
automation to context-dependent user interface adaptation. Our approach includes dynamic reverse
engineering techniques to model the interactive components, or morphology, of an application. Then, the
new user interface context is modeled and applied to the morphology. The resulting modified model is
subsequently transformed to implement an adapted user interface. The main approach is to refine abstract
user interface models to provide a better fit for an application’s environment, users, or usage scenarios.

This report describes the MesoMORPH project, beginning with a description of ontological excavation, and
then a set of heuristics for obtaining the morphology from a system to be evolved. We then present a
context specification representation, HAS-L, which supports descriptions of user capabilities, activities, and
situational factors. The resulting morphology and context model are combined using knowledge base
inferencing to produce a new user interface model adapted for the specified context. We incorporate a case
study of a real-world user interface as an example to demonstrate context-dependent transformation.

Ontological Excavation
Applications possess and implement a specific "theory of the world" or ontology. Recovering and modeling
this ontology may help inform software developers seeking to extend or adapt an application's functionality
for its next release. We have developed a method for the black-box reverse engineering or excavation of an
application's ontology. The ontology is represented as a semantic network, and graph theoretic measures
are used to identify core concepts. Core concepts contribute disproportionately to the structural integrity of
the ontology. We present analyses of ontologies excavated from several interactive applications. From a set
of several candidate metrics for identifying core concepts we find node between-ness centrality is a good
measure of a concept's influence on ontological integrity and that the k-core algorithm may be useful for
identifying cohesive subgroups of core features. We conclude by discussing how these analyses can be
applied to support application evolution.

 1

MesoMORPH Toolset
MesoMORPH is a process and toolset for evolving software systems for a new context, including
environment changes, activity changes, and user abilities (or disabilities). The MesoMORPH toolset
includes gauges that allow design-time metrics related to feature importance and the impact of changes
according to a specified context. MesoMORPH provides support for the following capabilities:

• Create an optimized application for a specified set of tasks (for example, a fireman and a doctor
may be able to use the same disaster recovery system, but need to perform different tasks with the
information)

• Adapt for a particular user (a user with physical disabilities, either natural or imposed by the
environment - such as a blind user or a user who is operating in darkness)

• Adapt for a situation (using an application while driving a vehicle, adapting to a heads-up display)
• Adapt for a new device (migrate the user interface from a desktop to a Palmtop display)

Benefits
The goals of the MesoMORPH effort were to speed up the software adaptation process for a new context
by a significant factor, provide gauges (metrics) to determine the difficulty and feasibility of adapting an
application to a particular context, and automatically reorganize and generate a morphology (user interface)
that is adapted to a new context. The following sections detail our approach and results.

 2

2 Methods, Assumptions, and Procedures
We established a theoretical framework for MesoMORPH including a process model and definitions for the
Ontology (entities and relationships), Morphology (shape of the current user interface) and Teleology
(tasks) of an application. We begin with background on Meso-Adaptation.

2.1 Meso-Adaptation
The MesoMORPH project [1] is exploring Meso-adaptation as an alternative to traditional software re-
engineering or adaptation. Meso-Adaptation is a form of software adaptation falling between the two
extremes of macro-adaptation (major re-engineering) and micro-adaptation (run-time tuning). In Meso-
adaptation, a change administrator makes changes to a system by configuring COTS/GOTS components
that advertise their capabilities after subjecting them to computer-supported analyses of conceptual
cohesion, compatibility and coverage. These analyses yield quantitative estimates through MesoMORPH’s
gauges, which are design-time metrics that enable feasibility evaluation for deciding which components
can be integrated into existing systems. Three domains of discourse are included in this analysis:
• Ontology is the system’s implicit model of the world. System components are compatible to the extent

that their ontologies can be merged reliably. MesoMORPH includes a simple but powerful ontology
representation WorldView (based on Scenicview [2]) and a technology TransPortal for supporting the
derivation of ontology information from black-box interface behavior.

• Context consists of human capabilities, activity scenarios and situational factors in the assumed
context of use. In a rapidly changing situation, there is insufficient time for orthodox requirements
engineering, but code modifications, however rigorously applied, neglect the human activities and
situational factors driving the change and may lead to dangerously unusable systems. MesoMORPH
incorporates a representation of human capabilities, activity scenarios and situational factors in a
common representation, HASL.

• Software architecture includes architectural adaptation wrappers for ontology and context.
MesoMORPH includes architectural specifications in terms of both ontology and change factors, and
a technology for reengineering existing interfaces. The process includes architecture gauges and
automated synthesis.

MesoMORPH defines representations, gauges, and adaptations at each of these levels. The work described
in this report details all three levels.

 3

2.2 Reverse Engineering the User Interface Model
The MORPH work showed that application code can be reverse engineered via static analysis to derive a
model of the user interface [3]. However code is not always available for user interfaces that need to be
quickly adapted. Stroulia et. al demonstrated a viable approach to analyzing an application dynamically to
derive a user interface model from its output [5],[6]. Chan et. al combined both static code analysis and
dynamic analysis to detect user interface components [7]. These researchers have demonstrated the
feasibility of automating black-box dynamic analysis for user interfaces, so we are not currently focusing
on automatically deriving morphology. Instead, we focus on the issues and challenges of applying context
to a manually derived user interface.

 MesoMORPH currently employs a manual black-box reverse engineering technique which can be used to
model legacy system user interfaces when the code isn’t available. The process consists of two steps: 1)
Deriving the morphology and 2) Modeling the morphology. As an example, Figure 1 shows the Microsoft
Windows 98 CD player application. The menu items in the top left of the screen are close together and
require a drag-and-drop interaction technique to select from a submenu. Also note the small, densely
clustered control buttons for play, reverse, fast forward, stop, and pause in the right hand corner of the user
interface. An able bodied user who is adept with a mouse typically finds these menu items and icons
relatively easy to select. However, a user with a motor disability, or a user who has a mobile computer with
a trackball interface may have difficulty with the small size and proximity of the buttons, leading to user
interface errors.

Figure 1: Windows 98 CD player application

2.2.1 Deriving the morphology
We model the user interface (UI) by creating a hierarchical interface map. This map consists of the UI’s
visual and semantic grouping components which we term containers (e.g. windows, dialog boxes,
toolbars), interactive elements or interactors (e.g. buttons, text fields, check boxes), and purely presentation
components called information displays, such as labels or icons. The nodes of an interface map represent
these major components of the UI and are also linked using directed edges to show either their point of
containment or their point of activation. The hierarchy is rooted by a node representing the application
itself; and all menus and controls are represented at the hierarchical level they occur in the interface.

We build this map manually by systematically traversing and activating all the user interface elements in a
top-down, left-to-right, and depth-first fashion. These elements and their connections are stored in a
Microsoft Visio drawing which represents the entire user interface hierarchy. Figure 2 shows the overall
hierarchical interface map for the CD player.

 4

Figure 2: The overall Windows 98 CD Player Morphology

2.2.2 Modeling the morphology
The interface map defines the structure and connections of the morphology; but we still must describe the
attributes of the individual user interface components. After the interface map is built, we annotate the
nodes with abstract component information based on the MORPH concept hierarchy [3]. The functional
type of the component, along with specific values for component attributes, is stored in the MS-Visio
diagram to create an annotated interface map. Figure 3 shows a partial model of the CD interface showing
nodes for the CD Player application, Main Menu Bar (MB), the Disc, View, Options, and Help Menus (M),
and the two menu items (MI) for the Disc Menu (Edit Playlist and Exit).

CD Player

Main MB: Disc M Main MB: View M Main MB: Options
M Main MB: Help M

D
is

c
M

: E
di

t
Pl

ay
lis

t M
I

D
is

c
M

: E
xi

t M
I

Main MB

Figure 3: Portion of the overall morphology of the CD Player

Figure 4 shows the MORPH-based abstract widget annotations for the main menu, indicating that this is a
selection object with a fixed length choice list with four choices, and a procedural action (as opposed to a
simple mode switch). This abstract description of the functionality of the widget will assist in choosing an
appropriate replacement, if needed, in the new context.

Figure 4: MORPH widget annotations for main menu

 5

Abstract widget annotations are created for each component of the user interface in the interface map. This
information is later used to generate knowledge base representations of the abstract widgets in order to
decide which components may need to be changed depending on the context specification.

2.2.3 Representing context
The context of an application includes human, situational, and activity factors that can influence the
appropriate design of its user interface. In order to automate the transformation of the interface for a new
context, we must be able to describe and represent the context. We have created the Human Activity
Situation Language (HAS-L) to fill this requirement.

HAS-L describes context in terms of vectors of capabilities, capability ranges, and capability values. A
capability is defined as an attribute of a human user or situation that determines the extent to which a task
can be performed. A capability range is a set of possible alternatives for a given capability. Lastly, a
capability value represents a particular selection for a capability from a capability range for a given context.

Human context factors
The human context of an application may depend on a number of factors, including physical disabilities
(such as blindness) or imposed disabilities (such as operating in the dark). Because most user interface
designs target able-bodied users, these factors can have a profound impact when adapting for a user with a
disability. The HAS-L human context model is derived from the information processing model of the
general assistive technology system user described by Cook and Hussey [8]. This model divides human
capability into several categories, including sensory function, perceptual and cognitive function,
psychosocial function, and motor and effector (muscular elements of the body that provide movement)
control. For the purposes of our study, we have chosen to represent sensory, motor, and effector
capabilities as the human context of an application.

Sensory Function in the HAS-L model includes visual and auditory factors. For example, visual acuity
refers to the ability to focus on an object, which can be affected by the object’s size, contrast with its
background, and separation from surrounding objects [8]. A user with low visual acuity may be able to use
a graphical interface, but the buttons and icons need to be large, bright, and spaced apart. Visual field
describes peripheral vision abilities; visual tracking refers to the ability to follow a moving object with the
eyes. Visual accommodation describes the point at which the user’s eyes can best focus. We add visual
color perception to the model to accommodate users who may be colorblind. Audio amplitude and
frequency are determinants of hearing capabilities. The HAS-L sensory factors and their capability ranges
are summarized in table 1:

Capability Capability Range
Visual acuity None Reduced Normal
Visual field None Skewed (left

or right)
Normal

Visual tracking None disjunctive Normal
Visual
accomodation

None Range
(diopters)

Normal

Visual color
perception

Colorblind
red-green

Colorblind
other

Normal

Audio amplitude None Reduced Normal
Audio frequency Low

threshold
High
threshold

Normal

Table 1: Sensory factors for human context

 6

Motor and effector factors in the HAS-L human context model describe a user’s ability to use input devices
to communicate with an application. Typically these devices are based on muscle movements, but they
may be based on other biometric input such as direct brain interfaces [9]. Fitt’s law states that time to
move to a target decreases with proximity and larger sized objects, and decreases with distance and smaller
objects [10]. Therefore a user with decreased motor abilities may need selection targets to be larger and
closer together. Table 2 details the motor and effector factors of HAS-L.

Capability Capability Range
Speed of cursor
movement

Slow Reduced Normal

Selection accuracy
(resolution)

Low Reduced Normal

Reaction time Slow Delayed Normal
Range of
movement

Small Reduced Normal

Endurance Low Reduced Normal

Table 2: Motor and effector factors for human context

Situational context factors
Situational context factors include aspects of the physical environment for the application, such as the
screen size of the output device, lighting conditions, or distractions (such as driving a vehicle). The HAS-
L situational context model is detailed in table 3:

Capability Capability Range
Screen Size Small

(Pilot)
Normal
(CRT screen)

Large
(Smart
Board)

Input Device Continuous
(Mouse,
Joystick)

Direct
(pointing)

 Discrete
(Switch,
keyboard)

Selection
Mechanism

Switch Dwell

Vision
required
(location of
display)

Central Peripheral All

Light Low Normal
(indoor)

Bright
(outdoor)

Sound
environment

Normal Quiet Noisy

Distraction
level

Low Medium High

Table 3: Situational context factors

 7

Activity context factors
Activity context factors pertain to the user’s overall goals for the application, such as:

• Risk level - how important is the activity to the success of the overall mission?
• Reversibility - can the activity be reversed?
• Error margin - how sensitive is the activity to error?
• Cognitive load - decision making, logical reasoning, analysis requirements?

The HAS-L activity factors are detailed in table 4:

Capability Capability Range
Attention level
(of the activity)

High Medium Low

Cognitive Load
(reasoning req'd)

High Medium Low

Error Margin
(How sensitive?)

High Medium Low

Memory Load
(mnemonic demands)

High Medium Low

Risk Level
(success)

High Medium Low

Reversibility
(error correct)

High Medium Low

Sensory Constraints High Medium Low

Table 4: Activity context factors

Deriving context
Obtaining an accurate model of a given context can be a somewhat inexact and subjective process. Ideally,
each of the capability ranges within the capability descriptions would be clearly defined and easy to
quantify. In reality, determining which capability value is appropriate may depend on thresholds that may
be negotiable. For example, how many items must be held in short-term memory to rate a “high” memory
load? Currently, we are not addressing these specific questions, rather demonstrating the feasibility of
being able to describe context and apply it to a user interface model. The possibilities for creating surveys,
clinical diagnostics, and metrics for determining context capability values are significant, but outside the
scope of this work.

 8

2.2.4 Transformation
Once the interface map and UI component annotations are complete and the new context has been
specified, the final step is to apply the context to the UI model to obtain a transformed UI model. From this
new model, a context-specific interface can be generated.

Knowledge representation
To prepare for transformation, the interface map components and the context description are translated into
a frame-based knowledge representation called NeoCLASSIC [8], [9]. NeoCLASSIC represents user
interface components as individuals, or object instances, with capability range attributes specified as role
fillers. Figure 5 shows the automatically generated NeoCLASSIC representation of the main menu
interaction component for the Microsoft CD player in the knowledge base.

(cl-create-ind 'Main-Menu
 '(and SELECTION-OBJECT
 (fills action Procedural-Action)
 (fills number-of-states 4)
 (fills variability Fixed)
 (fills grouping Not-Grouped)
)
)

Figure 5: The NeoCLASSIC representation of the main menu widget attributes

A NeoCLASSIC individual is created for each user interface component, and then the individuals are all
loaded into a knowledge base.

 9

Next, the context description is specified and also translated into the NeoCLASSIC representation. In our
case study, we described the context of a user with “locked-in syndrome”, a person who is completely
paralyzed and unable to speak. Our user communicates through a direct brain interface that intercepts
minute changes in brain signals that can be used as control signals for an external device such as a
computer. Figure 6 shows the context capability-value pairs for this user for the Microsoft CD Player:

Human Context
Visual acuity reduced
Visual field normal
Visual tracking Normal
Visual accommodation Normal
Color perception Normal
Audio amplitude Normal
Audio frequency normal
Speed slow
Selection accuracy Low
Reaction time slow
Range of movement small
Endurance low

Situational Context

Screen size Normal
Input device Continuous
Selection mechanism Dwell
Vision required Central
Light Indoor
Sound environment Normal
Distraction level Low
Stress level Low

Activity context

Attention level Low
Cognitive load Low
Error margin Low
Memory load Low
Risk level Low
Reversibility Medium
Sensory constraints medium

Figure 6: HAS-L context representation for severely disabled user with low selection ability

 10

Widget nuances
In order to identify appropriate replacement interface components in a specific widget toolkit, the
information about the available widgets in the application programming interface (API) also need to be
added to the knowledge base, along with the nuances that can be adapted such as size and color. We store
these API descriptions as NeoCLASSIC concepts, which are class or template definitions. The knowledge
base also contains a mapping of effects for the capability values, for example a reduced visual acuity field
would be mapped to bright colors. Figure 7 shows a description of a button from the tcl/tk toolkit whose
size has been specified as large:

(cl-define-concept 'Large-Button
 '(and TK-OBJECT
 (fills effect Procedural-Action)
 (fills number-of-choices 1)
 (fills choice-list-type Fixed)
 (fills length 100)
 (fills width 33)
)

Figure 7: Representation of button widget in NeoCLASSIC

Transformed model and generated UI
The transformation process consists of a collection of automatically generated NeoCLASSIC queries that
test each interface component against the constraints of the context, and produce as output a list of
replacement widgets from the specified widget API. When all of the interface map components have been
transformed, the resulting model can be used as a specification to build a new graphical user interface
(although this can be automated, a manual process is currently employed). Figure 8 shows the interface
that result from applying the locked-in user’s context to the control button portion of the Microsoft CD
player model. The buttons are much larger, spaced farther apart, and are brighter to accommodate the
user’s reduced selection ability and reduced visual acuity.

Figure 8: Control portion of evolved user interface for low selection ability

Case Studies
We performed manual experiments with the MesoMORPH process with several pilot applications: iCaster
MP3/CD player, Microsoft WinAmp, Yahoo Messenger, and Microsoft Notepad. We completed the
iCaster pilot case study described above, modeling the ontology in UML and also in a semantic network
and modeling the contextual evolution using the initial HASL specification. We informally performed the
gauge analyses to obtain measures of evolvability in the three scenarios, and have produced gauge output
such as intensity maps. We composed full models of WinAmp, Yahoo Messenger, and Notepad, and
produced the PortL descriptions automatically using the Surveyor tools. We then produced two HASL
specifications, one for a user with low attention (driving a car) and one for a user with low selection ability
(neural control). We then applied the contexts against the PortL models and generated a new user interface
description adapted for the context.

 11

3 Results and Discussion
The initial case study showed that it is possible to automate applying context information to adapt a user
interface for a new context. In the course of this work, however, several issues arose:

Dynamic analysis - As with any process involving dynamic analysis, the completeness of the model is
an issue. It is very difficult or impossible to generate every possible path through a user interface in order
to map the user interface components. In modal interfaces, it may not be possible to reach certain menus
without being able to force a particular system state, which in turn may not be possible. Also the halting
problem is an issue – how do we know when the interface has been covered? In the MesoMORPH process,
we assume that activating all of the menus and icons in depth-first, hierarchical order produces a
satisfactory partial model of the user interface.

Ambiguity – It is possible that the MesoMORPH transformation process may identify more than one
option for a particular user interface component’s implementation. Resolving the ambiguity may require
human (system designer) intervention to decide from among the options.

Context conflict - In our case study, we discovered that the adaptations for some capability values may
conflict with others. For example, a user with low visual acuity needs icons to be spaced well apart in
order to distinguish them visually. However, a user with low cursor movement speed needs icons to be
close together in order to be able to target them more effectively. These two capability values are in direct
opposition to each other. Again, this situation requires human intervention to make a decision on which of
the capability values should take priority in the user interface.

Adding new aspects of context – it is not possible to predict all of the possible capabilities that may
need to be accommodated. Others may need to be added as they are discovered. The MesoMORPH HAS-
L representation is easily extensible in order to allow new capabilities and capability values to be added.

Context model accuracy - As stated previously, there are many ways of correctly determining context.
In order to remove subjectivity from the context descriptions, there need to be set heuristics or procedures
for determining context values.

Time consuming - Modeling the morphology manually can be very time consuming. Automating the
MesoMORPH blackbox morphology derivation process would represent an enormous time savings.

 12

4 Conclusions
We have demonstrated the feasibility of using automation to streamline the process of adapting software for
a particular context. We created a new representation for context, HAS-L, which combines human,
situational, and activity factors. We showed in a case study that a real user can be described using HAS-L
and that this information can be applied to transform a real-world user interface.

Future work includes incorporating ontological information in order to add centrality (and therefore
importance) data to evolutionary procedures. This will allow pruning of interfaces and removal of
inappropriate functionality (such as an internet buddy list when adapting the CD player to a driving
situation). Because the interface maps are basically graphs with nodes representing components and edges
denoting containment or points of traversal, they lend themselves to a network analysis similar to that used
in social network theory [13] or urban planning [14]. These analysis methods and graph metrics developed
for these two disciplines can be used to measure the morphology’s overall efficiency of access and to
measure the effects of MesoMORPH’s recommended modifications to the interface.

 We are also developing similar methods for reverse-engineering the application’s domain concepts from
the morphology and representing those concepts and their relationships in an ontology that we have chosen
to model as a semantic network. Using this representation and the aforementioned metrics, we can identify
an application’s core concepts, concepts that play a significant role in its underlying domain model.
Because both representations have the same structural properties, they can be merged into a supergraph
where edges connect the morphological elements to the concepts contained in the ontology. In contextual
adaptation, an analysis of the relationship between the user interface elements and the core concepts in the
ontology can provide metrics about how the modifications are affecting accessibility to those core concepts
and recommendations about which interface elements can be removed without loss of integrity to the
application’s core functions. The ontological information can also affect the presentation of the new user
interface components; for example, in the CD player the central concept “play” might result in a play
button that is twice as large as other buttons. The eventual goal of MesoMORPH is to support this
combined activity of morphological, ontological, and contextual analysis towards a semi-automated
adaptation of a system to its new context.

This work can also be vastly expanded in the definitions of context information. Heuristics can be
developed to assist in accurately deriving the context capability values. We have currently only addressed
physical and sensory capabilities; we have not touched on cognitive disabilities such as memory, recall, and
recognition. The MesoMORPH adaptation technology holds much promise for these and other context
domains. A full study adapting real-world applications to a variety of contextual factors is underway.

 13

5 References
[1] Moore, M.; Potts, C; Hsi, I; and Yu, D. The MesoMORPH project,

www.cis.gsu.edu/~mmoore/MesoMORPH, 2003
[2] Potts, C. ScenIC: A strategy for inquiry-driven requirements determination, Proc. RE'99: International

Symposium on Requirements Engineering, Limerick, Ireland. June, 1999
[3] Moore, Melody. User Interface Reengineering, Doctoral Thesis, College of Computing, Georgia

Institute of Technology, 1998.
[4] Foley, James D., van Dam, Andries, Feiner, Steven K., and Hughes, John F. Computer Graphics

Principles and Practice, Second Edition, Addison-Wesley Publishing Company, Addison-
Wesley Systems Programming Series, 1990.

[5] E. Stroulia and T. Systa. Dynamic analysis for reverse engineering and program understanding,
Applied Computing Reviews, Spring 2002, ACM Press.

[6] El-Ramly, Mohammad; Stroulia, Eleni; Sorenson, Paul. “Recovering software requirements from
system-user interaction traces”, Proceedings of the 14th international conference on Software
Engineering and Knowledge Engineering, ACM Press, Ischia Italy, 2002.

[7] Chan, Keith; Liang, Zhi Cong Leo; Michail, Amir. “Design Recovery of Interactive Graphical
Applications”, in Proceedings of the 2003 International Conference on Software Engineering, IEEE
Press, Portland, Oregon, May 2003.

[8] Peter F. Patel-Schneider, Merryll Abrahams, Lori Alperin Resnick, Deborah L. McGuinness and Alex
Borgida. ``NeoClassic Reference Manual: Version 1.0.'' Artificial Intelligence Principles Research
Department, AT&T Bell Labs, 1996.

[9] Lori Alperin Resnick, Peter F. Patel-Schneider, Deborah L. McGuinness, Elia Weixelbaum, Merryll K.
Abrahams, Alex Borgida, Ron Brachman, Charles L. Isbell, Kevin C. Zalondek. ``NeoClassic User's
Guide: Version 1.0.'' Artificial Intelligence Principles Research Department, AT&T Bell Labs, 1996.

[10] Cook, A.M., and Hussey, S.M. Assistive Technologies: Principles and Practice, Second Edition,
Mosby Inc., St. Louis, MO, 2002.

[11] Wolpaw, J. R., N. Birbaumer, D.McFarland, G. Pfurtscheller, and T. Vaughan. 2002. Brain-computer
interfaces for communication and control. Clinical Neurophysiology 113: 767-791.

[12] Fitts, P.M. “The information capabity of the human motor system in controlling the amplitude of
movement”, Journal of Experimental Psychology 48:483-492, 1954.

[13] S. Wasserman and K. Faust, Social Network Analysis. Cambridge University Press, 1994
[14] B. Hillier, Space is the Machine: A Configurational Theory of Architecture. Cambridge, UK:

Cambridge University Press, 1996
[15] Hsi and C. Potts, “Studying the Evolution and Enhancement of Software Features,” in Proc. Intl. Conf.

Software Maintenance, 2000, pp. 143-151.

 14

http://www.cis.gsu.edu/~mmoore/MesoMORPH
http://www-out.bell-labs.com/project/classic/papers/NeoRef.html
http://www-out.bell-labs.com/project/classic/papers/NeoGuide/guide.html
http://www-out.bell-labs.com/project/classic/papers/NeoGuide/guide.html

6 List of Symbols, Abbreviations and Acronyms

COTS – Commercial Off The Shelf (pertains to software)

GOTS – Government Off The Shelf (pertains to software)

HAS-L – Human, Activity, Situational Language (for specifying context)

MesoMORPH – Meso-Adaptation based on Model Oriented Reengineering Process for Human-Computer
Interface

MORPH – Model Oriented Reengineering Process for Human-Computer Interface

 15

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Methods, Assumptions, and Procedures
	Meso-Adaptation
	Reverse Engineering the User Interface Model
	Deriving the morphology
	Modeling the morphology
	Representing context
	Transformation

	Results and Discussion
	Conclusions
	References
	List of Symbols, Abbreviations and Acronyms

